
STRUCTUREVARIABLES

backgroundcolor (FFFFFF)

windowless (false)

height (260)

width (320)

duration (0)

file (null)

image (null)

link (null)

start (0)

backcolor (FFFFFF)

frontcolor (000000)

lightcolor (000000)

screencolor (000000)

logo (null)

overstretch (false)

shownavigation (true)

showstop (false)

showdigits (true)

autostart (false)

bufferlength (3)

linkfromdisplay (false)

linktarget (_self)

repeat (false)

sender (null)

usefullscreen (true)

usemute (false)

volume (90)

View

Model

onState(oldstate,newstate)
onBuffer(percentage)
onFullscreen()
onLoad(percentage)
onMute()
onTime(elapsed,total)
onVolume(percentage)

goPause(seconds)
goStart(seconds)
goStop()
goVolume(percentage)

Controller

setState (oldstate,newstate)
setLink()
setLoad(file)
setMute()
setPlay()
setScrub(seconds)
setStop()
setVolume(percentage)
setFullscreen()

Player
composites

JAVASCRIPT API

Since Silverlight programming is done in
javascript, the player is easily accessible.
Javascript has already got a reference to
the player through the instantiation:

var ply = new jeroenwijering.Player(cnt,src,cfg);

Requesting a configuration variable can be
done through this reference:

alert(’the file is: ’+ply.getConfig().file);

The player can be controlled by sending
events. Each function of Controller is
named after these events. Examples:

ply.sendEvent(’PLAY’);

ply.sendEvent(’VOLUME’,50);

ply.sendEvent(’LOAD’,’newvideo.wmv’);

Finally, you can assign your own functions
to listen to specific events of the player.
Each function of View is named after the
corresponding event:

ply.addListener(‘VOLUME’,alert);

function myFunc(old,new) {

 alert(’the state went from ’+old+’ to ‘+new);

};

ply.addListener(‘STATE’,myFunc);

Note that the state event can have the
values Buffering, Closed, Error, Opening,
Paused, Playing, Stopped, or Completed.

When the Player starts, it first loads the configuration list and places the graphics on
the page. Next, Controller, Model and View are created. They now start calling each
others’ functions in a so-called MVC loop. Model calls the functions from View, View
those from Controller and Controller those from Model. There is one exception: Model
calls both the onState() from View and the setState() from Controller.

configuration (list with variables)

 handles all user inputdraws all controls of the player

manages media playback

